ISSN 2045-3345

-
=
(=]
<
<
n
N
[
Z
N
=)
m
n
=
=
(=)
<
O
(¥}
w
1y
(=)
-l
g
4
[~
=)
(=)
ﬂ
I
Q
x
g
W
n
w
x

VOLUME 5, 2012

ADVANTAGES OF OBJECT-ORIENTED OVER
RELATIONAL DATABASES ON REAL-LIFE
APPLICATIONS

Hakan Bittiner'
Industrial Management and Engineering Co., Istanbul, Turkey

ABSTRACT

Business, manufacturing and other kinds of databases have
been implemented by the relational database technology.
The transition from one generation to the next has always
been necessitated by the ever-increasing complexity of
database applications and the cost of implementing,
maintaining, and extending these applications. Accordingly,
whatever the application areas of the relational database
technology are, the basic shortcomings and weaknesses of
this discipline are valid.

On the other hand, the object-oriented database technology
forms a good basis for all kinds of database applications,
e.g., CAD / CAM / CASE / CIM systems, knowledge
management systems, and others, due to its flexible,
effective, and extensible data modeling and application
formalism.

In this study, two popular database technologies, the
relational and object-oriented, are briefly introduced and
their general characteristics are discussed. The purpose of
this study is to point-out and compare the important features
of relational and object-oriented databases, for the sake of
understanding the pros and cons of these technologies
before implementing them.

UDC CLASSIFICATION & KEYWORDS

m 00465 m OBJECT-ORIENTED ®= APPLICATIONS =
DATABASES = RELATIONAL

INTRODUCTION

Business, manufacturing and other kinds of databases have
been implemented by the relational database technology.
The transition from one generation to the next has always
been necessitated by the ever-increasing complexity of
database applications and the cost of implementing,
maintaining, and extending these applications. Accordingly,
whatever the application areas of the relational database
technology are, the basic shortcomings and weaknesses of
this discipline are valid.

However, object-oriented technology, which is the
fundamental advancement in database technology, satisfies
the objective of reducing the difficulty of designing and
implementing very large and complex database
requirements.

In this study, two popular database technologies, the
relational and object-oriented, are briefly introduced and
their general characteristics are discussed. The purpose of
this study is to point-out and compare the important features
of relational and object-oriented databases, for the sake of
understanding the pros and cons of these technologies
before implementing them.

Object-Oriented vs. Relational Databases

The relational database model requires the data or real-
world entity to be organized into dimensional arrays called
tables (see Figure 1.) According to the article Relational

"'hakan.butuner@imeco-tr.com

www.researchjournals.co.uk

Databases (1992), Baker, in summarized form, stated the
following statements. A typical database will contain many
tables. A table consists of columns that are commonly
referred to as attributes and rows that are called records.
The domain of an attribute contains only a limited primitive
data type (such as characters, integers, fixed-length strings,
fixed- and floating-point numbers, Boolean, and date), and
an attribute may only have a single fixed length value. Every
table will have one or more attributes designated as a key.
This is necessary so that each record can be uniquely
identified.

One of the characteristics of the relational technology is that
relationships between tables are based on the same
contents (values) of the key attribute(s) of the relations and
operations, such as joins and sorts. Also, relationships
between tables are not explicitly defined. External software
applications and/or database languages such as SQL must
perform this function. Before the implementation of
operations, such as joining two or more tables, the entities
are grouped into tables, and the attributes in each of the
tables must undergo a process called normalization.

According to the article Introduction to Object-Oriented
Databases (1990), Kim, we can summarize his statements
within the following paragraphs. Object-oriented database
models require the data or real-world entity to be organized
as objects. A record in the relational model corresponds
roughly to an object in object-oriented models (see Figure
2.) However, while a record only has a state, an object
encapsulates both state (data) and methods, and thus can
represent structure as well as behavior. Therefore, each
object can encapsulate many properties (attributes) and
methods (that operate on its related properties) associated
with it, which improves semantic consistency by means of
encapsulation. Methods are used to operate and change
the object and its properties and/or to return part of its state.
Examples include creations of new instances, deletions,
retrieving instances, updating instances and/or their
properties. These methods and attributes in an object are
invoked from the outside of the object by means of message
passing. Thus, the interface of an object, which is a
collection of messages to which the object responds by
returning an object, is public. Users are free to ignore the
implementation details of methods of the object, which is
private.

For demonstration purposes, let us consider the example of
a company that manufactures ladders according to customer
specifications. The ladder can have any number of rungs,
as specified by the customer. Using the object-oriented
approach, the Ladder would be modeled as an object with
attributes such as the Number_of _Rungs, and methods
such as the Create_Graphical_Representation, and
Calculate_Tolerances. Upon invoking these methods by
supplying the relevant parameters, the object would
automatically provide a graphical representation of itself,
including design changes that are necessary to

ISSN 2045-3345

-
2
(=]
4
<
n
N
W
Z
7
=)
m
N
e
=
(®)
4
o
(¥}
w
Ty
o
-l
g
<
4
=)
o
ﬂ
I
o
(5
g
W
n
w
(4

ADVANTAGES OF OBJECT-ORIENTED OVER RELATIONAL DATABASES ON REAL-LIFE APPLICATIONS

accommodate the change in variables the
Number_of_Rungs).

However, the same organization using the relational
approach is semantically incapable and difficult to
understand. For example, assume we need to define height,
length, and width of the packages of parts. In the relational
schema, these attributes may be defined independently or
they may be defined as the attributes of another relation. In
the first case the fact that they all belong together is lost,
and in the second case a new user-defined key attribute that

consists of four elements has to be defined.

Unlike the relational model, where relationships are not
explicitly defined between tables, object-oriented models
have several ways of specifying relationships between
objects directly in the database structure, and these
relationships are not implied by the object's contents (values).

First, objects can be grouped together in a table-like
structure, called a class, to resemble the relational model's
table. However, while a table group records that share the
same set of attributes, a class groups objects (instances of
the class) that share the same set of attributes and methods.
Additionally, unlike tables, class(s) (its/their objects) can be
the subset(s) of other class(s) (its/their objects) which are
called class hierarchy (IS-A relationship). For example, the
class Machinable_Part would be a subset of the class Part.
The properties of the Machinable_Part class would
automatically include those of the Part class. This feature is
known as inheritance (allowing new objects to be built from
old ones without having to redefine them from scratch) and
is another special characteristic of object-oriented models.
Inheritance allows each succeeding level of class(s) (its/their
objects) to acquire the properties (attributes) of the higher-
level class(s) (its/their objects) and to have additional local
properties.

(i.e.,

In addition, class(s) (its/their objects) can inherit operations
(methods) from the higher-level class(s) (its/their objects)
as well. In some cases, an inherited operation may need
more programming code to take into account the additional
properties of the lower-level class. This can be
accomplished by refining the higher-level's operation. Only
the additional programming code is included in the refined
operation. The lower-level object automatically retrieves the
higher-level's operation whenever the lower-level's
operation is invoked.

Generalization allow us to impose structure onto the set of
object types in the database, and the structural and
behavioral relationships between objects can be seen more
clearly and organized in a more modular manner. This
allows easy modifications on the schema and allows the
objects to be reused for other applications. Therefore, using
the class hierarchy captures the semantics of categorization

Figure 2: An illustration of an object-oriented database model

Figure 1: An illustration of the relational database model
CUSTOMER TABLE
Customer # Customer Location
Name
A MFG Co. New York
B CIM Co. Chicago
EXISTING ACCEPTED ORDER TABLE
Order # Order Date Customer #
X5 121093 A
X6 122393 A
X12 20394 A
INVENTORY PRODUCT TABLE

Product # Zraor::d Price
1 Table 300
2 Chair 200
3 VCR 275
4 Walkman 100
5 Radio 350
7 T 0

LINE ITEM TABLE
Line ltem Order # Product # Qty.
P1 X5 1 5
P2 X5 2 4
P3 X5 1 2
P4 X5 7 2
P1 X6 1 6
P1 X12 5 3
Source: Bitliner (1994)

www.researchjournals.co.uk

VEHICLE ENGINE
VEHICLE
VEHICLE DRTRAI] -
1 Size
Drivetrain—"| Engine Cylinders
Manuf acturer Tranamission
Weight Methods- ~DMthods-
<Methods=
AUTOMOEILE COMPANY
Avg waght(Ca) TRUCK name FMPLOYEE
o of wheel-4(S lncation L
- nresident = | :
San
body <Methods- Name
Thivac
<additional or
overviden methods- AUTOCOMPANY

<Additional
overridden
methnd e

TRUCKCOMPANY
CA~ Class Arribure

$A - Shared Attribute
* ~ Multivalued |

L]

DOMAUTOCOMP

Class’ subclass link
Attribute / domain link

Source: Kim (1990)

of components, and at the same time suspends multiple
occurrences of the same attributes and methods by stating
them once, which reduces the size of the schema
considerably.

Second, unlike the relational model, the domain (value) of
any attribute of a class (its objects) may be another class
(its objects) that naturally leads to a directed graph of
classes to resemble the hierarchical model's database.
However, this graph, called an "aggregation hierarchy"
(IS-PART-OF relationship), can be cyclic. Further, an
attribute of an object may take a single or a set of values,
which may let an object contains variable-length values. In
this way, besides the basic data types provided by the
relational model, designers can define a variety of data types
(including array, set, point, text, graphical, image, etc.) to
model complex data structures that closely match real-world
objects and enhance the semantic contents of the schema.
Furthermore, since an object can refer to another object, a
method defined in one object can perform an operation on
that other object. Consequently, object-oriented models
provide a significant enhancement to the database
designers to allow them to define additional data types and
operations on these data types, called "abstract data types."
By the help of the article Bottom-up Design of Object-
Oriented Databases (2001), Kappel, Rausch-Schott, and
Retschitzegger, the following example has been formed. A

JAPANAUTOCOMP

ADVANTAGES OF OBJECT-ORIENTED OVER RELATIONAL DATABASES ON REAL-LIFE APPLICATIONS

concept closely related to the abstract data types is the
"complex data object." For example, consider an order
processing application. An object represents a line item in
a customer order. An attribute within the line item indicates
the product ordered. Within the relational model, this
attribute would contain a value of the Product Number
relation key identifier, thus providing a cross reference from
the Line Item to the Inventory Product relation (see Figure
1). Within object-oriented models, the same attribute would
contain a reference to the inventory product itself directly.
Thus, we have an object that contains another object. In this
example, restricting the line items' attribute to contain only
the inventory products means that this attribute must be of
type Inventory_Product. As mentioned above, we can also
define new and/or use existing operators for the abstract
data type Inventory_Product. These operators, for example,
might change the values of the corresponding attribute.

Third, classes (their objects) can be connected in both of
the previously outlined ways. They are the basic
specifications offered by object-oriented models to represent
the direct relationships between objects.

Based on the article OODBMS vs. Relational (1992),
Loomis, we can summarize his statements within the
following paragraphs. However, in the relational
technology, there are two fundamental problems regarding
the relationships. When the relational model is used,
application entities have to be transformed and treated as
tables. Additionally, many normalized tables could be
required to represent a single real-world entity. Users and
programmers typically want to manipulate objects, not
tables, as tables have poor semantic expressions to
represent real-world entities. At run time, entities from the
tables need to be put back together to make application
entities. As there is only a very weak notion of linkages
between tables, putting those entities together in a
meaningful way needs joining and sorting, in which the
resulting view runs inefficiently, or in other words, slowly.
Because the object-oriented technology can model and
manipulate application entities directly, there is no need to
transform application entities into tables; consequently, a
joining process is not necessary, and therefore run time
performance can be far better than with RDBMSs support.

Second, relationships are always associated with "integrity
constraints" and other "rules." For example, don't delete
customer entities that contain outstanding orders. This
problem has meant building all the rules into an application
code. More recently, some RDBMSs let the data dictionary
store rules as procedures written in SQL and executed
whenever changes were made to the database. However,
this approach still falls short because without binding
integrity constraints directly to database relationships in the
first place, these rules cannot become a built-in part of the
database, and their operations are restricted to those
defined for the basic data types.

In the relational approach, entity integrity and referential
integrity are enforced by SQL. It also allows certain types of
data integrity checks, such as the attribute type and domain
checks and some enforcement of "relation constraints" (e.g.,
attribute A must be equal or greater than attribute B), to be
defined within the schema.

Within the relational model, the notion of primary keys
means that record identification (record uniqueness) is
based on the value of fields in the row, and changes typically
would not be allowed to the record's primary key or identifier.
Relationships within and among tables are implemented
using the key values. If the value of a primary key field
changes, then the row becomes a different row (the entity
identity independent from entity status is not supported),

www.researchjournals.co.uk

and a search for and change of all relations-relevant records,
containing the identifier, has to be performed by the specific
updating program in order to maintain the integrity among
the data elements. Also, unlike the object-oriented
approach, if you delete a record stored in a relational
database, other records may be left with references to the
deleted one and may now be incorrect. The integrity of the
data thus becomes suspect and creates inconsistent
versions.

In the object-oriented technology, object identifiers are
logical pointers and never reused. An object identifier
uniquely identifies an object and is generated by the system.
It verifies the existence of the object and the class to which
the object belongs when the system attempts to send it
messages. This lets the system attach methods to objects
that can enforce arbitrary integrity rules. More specifically,
in OODB technology only the object identifier(s) of the
instance(s) of a class are stored within the instance variables
(attributes), not the attribute values themselves, except
primitive attributes (in which only values are stored).
Therefore, it is permissible to store any type of data in an
object's instance variable by storing only its object identifier.
Relationships among objects are implemented using the
internal identifiers. Thus, unlike RDBMSs, if any attribute
value associated with the referenced object is changed, this
change is automatically propagated to all other objects that
refer to it. Consequently, even an attribute value that would
be considered the object's identifier can be modified without
any problems, and the object still maintains its identity.

In general, this concept ensures the maintenance of integrity
among the data elements and makes objects easy to
change, as relationships are explicitly defined through the
hidden identifiers. Also, due to the encapsulation, object-
oriented database models guarantee consistency and
relationship constraints between the operations executed to
the objects of any given data type by different applications.
In object-oriented models, other explicit constraints (such
as data scopes, data units, data types checking, etc.) can
also be enforced.

Also, in the object-oriented approach, replacing multiple
occurrences of compound keys reduces the size of the
database as well, but this reduction may be offset by
increased space utilization due to fixed size and smaller,
and uniform system-defined object identifiers. In the
relational schema, all the elements of the compound key
appear for each of these references without any syntactic
indication that they, together, reference a part.

Finally, though the object-oriented approach can form
references based on identity, this is not the sole basis for
relationships in the model, as it can relate objects through
the values of properties as well. In this way, it provides a
framework for unifying value-based and identity-based
access.

By the help of the article "Object Database Technology:
What Is It, What Are Its Advantages and Who Is Using It?"
(1992), Blakey, we can summarize his statements within the
following paragraphs. As a result, we can say that the
object-oriented approach provides clear mapping of
conceptual images. Once we identify the necessary classes,
we work on their attributes (defined with both instance and
class variables) and behaviors (defined with both instance
and class methods). It is a very organized process. This is
possible because we have a good initial understanding of
the semantics of the schema in terms of the objects; i.e., it
is better structured, and a simple mapping to the logical view
of data makes it more intuitive. Additionally, as data is
organized into tables in the relational approach, this makes
these systems inflexible and resistant to change. For this

ADVANTAGES OF OBJECT-ORIENTED OVER RELATIONAL DATABASES ON REAL-LIFE APPLICATIONS

reason, they are ineffective for storing data, especially data
that is not table oriented. On the other hand, object-oriented
database models do not have a rigid structure, as the
schema can be set, updated, and extended more flexibly.
This gives them so much power, such as higher productivity,
better quality, and more flexibility. For example
implementation on one side of a wall does not constrain the
design on the other.

The explicit enforcement of object-oriented technology, such
as class hierarchy and inheritance (generalization),
aggregation (inter-object) relationships, methods, and
encapsulation and message passing have stimulated a
reinvestigation into the architectural concepts that are also
provided by RDBMSs. These functionalities are persistence
data storage and transaction management and manage
sharing through concurrency control (which is more
comprehensive by object-oriented technology, including
database activities which require interactive and cooperative
transactions that may last for long periods, also known as
long transactions). They also protect data through backup
and recovery; grant only authorized access to data through
security schemes; and tune performance through a variety
of storage and access-path options. Additionally, they
provide administration facilities, schema management, and
a query facility. (These concepts are also greater than
RDBMSs.)

The relational technology allows attributes to be added into
existing tables, but dropping attributes or moving them to
other tables is seldom permitted. However, in object-
oriented technology, there are two types of schema
evolution: changes to the class definition and changes to
the structure of a class hierarchy. The types of changes
include creation and deletion of a class, alteration of the IS-A
relationship between classes, addition and deletion of
instance variables and methods, etc.

In RDBMSs, SQL is used to define, manipulate and control
data stored in a database, and there are relational algebra
(that enables the user to extract selected records and
attributes within a single relation) and relational calculus
(that facilitates the manipulations of two or more relations)
and set-oriented operations serving as standard guidelines
for designing relational databases. Users can generate
multiple views by means of SQL operation joins from several
tables.

Besides some of its "drawbacks" described below, data
manipulation in RDBMSs is quite well defined and
standardized:

(a) SQL only provides a small number of general
operations for queries and updates on the relational
database records. The operations are the same regardless
of the semantics of the entity involved.

(b) SQL does not permit updates to views that represent
joins.

(c) SQL permits adding attributes, but dropping attributes
or moving them to other relations is seldom permitted.

(d) SQL is mismatched with the common programming
languages that deal with record-at-a-time logic, not table-at-
a-time logic.

According to the article "Object-Oriented Application
Frameworks" (1997), Fayad and Schmidt has stated and
concluded the following paragraphs:

In object-oriented technology, unlike RDBMSs, all objects
provide their own set of operations, with some sharing
through classes, inheritance, and aggregation mechanisms.
Accordingly, object-oriented models are more powerful in
their capability of explicitly expressing application semantics.
Thus, within an OODB, operations or methods can be
www.researchjournals.co.uk

defined to perform updates or queries on objects using a
message-passing concept. However, unlike object-oriented
technology, within the relational technology, the message
passing concept can be handled by writing externally
defined programs, and/or by a programmer manipulating
the data only through predefined operations of SQL (which
requires the user to know specific table and attribute names).

Since operations are contained within the objects
(encapsulation), i.e., in the database itself, much less of a
programming code is required for an external application.
This also provides an appropriate basis for the development
of portions of general-purpose reusable code (modular
decomposition) of an object that can be reused in different
applications and can reduce the application development
effort. Hence, object orientation enhances logical data
independence, i.e., independence of applications from
database implementation. Object-oriented databases are
thus active while relational databases are passive. In
relational technology the application programs must redefine
relationships and operations for every application. In short,
use of object-oriented concepts ensures better extensibility,
reusability, and maintenance of software.

In general, in object-oriented technology, data definition,
manipulation, and control languages are based on object-
oriented concepts (previously outlined). The OODBMSs
interfaces can be well integrated with the object-oriented
programming languages and there is no impedance
mismatch, as both use the same object-oriented concepts.
In fact, the whole concept of a separate database and
programming languages can disappear. However, today
there are no agreements on standard language and
standard guidelines for designing object-oriented databases.

Object-oriented technology has some other features which
are not present in the relational technology, such as the
concepts of temporal evaluation of data (i.e., versioning and
change notification of data for designs when they evolve);
derived attributes that are computed from other attributes;
polymorphism; dynamic binding; etc.

Conclusion

It is difficult to represent and implement a variety of
applications using relational database technology because
of the shortcomings mentioned above. These applications
include computer-aided design, engineering, software
engineering and manufacturing systems (CAD, CAE, CASE,
and CAM); knowledge-based systems (expert systems and
expert system shells); multimedia systems that manage
images, graphics, voice, and textual documents; statistical
and scientific modeling and analysis programs; information
systems; and so on. However, object-oriented technology,
which is the fundamental advancement in database
technology (because of the features outlined previously),
satisfies the objective of reducing the difficulty of designing
and implementing very large and complex database
requirements.

References

Kappel, G., Rausch-Schott, S., Retschitzegger, W. Bottom-Up
Design of Active Object-Oriented Databases. Communications of
the ACM, 2001.

Fayad, Mohamed E., Schmidt, Douglas C. Object-Oriented
Application Frameworks. Communications of the ACM, 1997.
Loomis, Mary E. S. ODBMS versus Relational. JOOP Focus on
ODBMS, 1992.

Blakey, Adrian. Object Database Technology: What Is It, What Are
Its Advantages and Who Is Using It? CALS Journal, 1992.

Baker, Henry G. Relational Databases. Communications of the ACM,
1992.

Kim, Won. Introduction to Object-Oriented Databases. 1st ed.
Cambridge, Massachusetts: The MIT Press, 1990.

